题目内容

【题目】如图,在矩形ABCD中,AB=8,BC=12,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为

【答案】10或12
【解析】解:如图,在矩形ABCD中,AB=CD=8,BC=AD=12.
如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP= AD=6.
在Rt△ABP中,由勾股定理得 PB= = =10;
如图2,当BP=BC=12时,△BPC也是以PB为腰的等腰三角形.
综上所述,PB的长度是10或12.
所以答案是:10或12.

【考点精析】本题主要考查了等腰三角形的性质和勾股定理的概念的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网