题目内容
【题目】如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠CAB交AB的延长线于点D,过点O作直径EF∥BC,交AC于点G.
(1)求证:CD是⊙O的切线.
(2)若⊙O的半径为2,∠BCD=30°.
①连接AE、DE,求证:四边形ACDE是菱形.
②当点P是线段AD上的一动点时,求PF+PG的最小值.
【答案】(1)见解析;(2)①见解析,②PF+PG的最小值为.
【解析】
(1)连接OC,由AB是直径可得∠ACB=90°,由OC=OB可得∠ABC=∠OCB,由锐角互余的关系可得,即可得答案;(2)①连线AE、ED、BE,由∠BCD=30°,可得∠OCB=60°,进而可得∠OBC=60°,根据外角性质可得∠CDA=30°,即可证明∠CDA=∠CAD,可得AC=DC,由平行线性质可得,进而可得,即可证明ΔOCB,ΔOEB是等边三角形,易证明,,可得AC=CD=AE=ED即可得答案;②作F关于直线AB的对称点H,H在⊙O上,连接GH交AB于P点,此时线段GH最短,则PF+PG最小,连接OH,过H作HI⊥EF,可求出,,在Rt△AGO中,利用三角函数可求出OG的长,在Rt△HIO中可求出OI、HI的长,利用勾股定理求出GH的长即可.
(1)连接OC,
∵OC=OB,
∴,
∵AB是⊙O的直径,
∴,
∴,
∵,
∴,
∴OC⊥CD,
∴CD是⊙O切线.
(2)①连线AE、ED、BE,
∵
∴
∴
∴AC=DC
∵EF∥BC
∴
∴
∵OE=OB=BE
∴ΔOCB,ΔOEB是等边三角形
∵BC=OB=BE
∴易证,
∴AC=CD=AE=ED
∴四边形ACDE是菱形,
②作F关于直线AB的对称点H,H在⊙O上,连接GH交AB于P点,此时线段GH最短,则PF+PG最小,连接OH,过H作HI⊥EF
由①已证
又∵F于H关于直线AB对称
∴
∴,
在RtΔAGO中,OA=2
∴
在RtΔHIO中,OH=2
∴,
∴
∴PF+PG的最小值为