题目内容
【题目】已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.若=﹣1,则k的值为_____.
【答案】3.
【解析】
利用根与系数的关系结合=﹣1可得出关于k的方程,解之可得出k的值,由方程的系数结合根的判别式△>0可得出关于k的不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.
∵关于x的一元二次方程x2+(2k+3)x+k2=0的两根为x1,x2,
∴x1+x2=﹣(2k+3),x1x2=k2,
∴==﹣=﹣1,
解得:k1=﹣1,k2=3.
∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,
∴△=(2k+3)2﹣4k2>0,
解得:k>﹣,
∴k1=﹣1舍去.
∴k=3.
故答案为:3.
练习册系列答案
相关题目