题目内容
【题目】如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:
甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;
②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.
乙:①在直线AC上另取一点R,使得AE=ER;
②作直线PR,交直线AB于Q点,则Q、R即为所求.
下列判断正确的是( )
A. 两人皆正确 B. 两人皆错误
C. 甲正确,乙错误 D. 甲错误,乙正确
【答案】A
【解析】分析:根据甲的作法可知,四边形EFQP、EFPR都是平行四边形.根据平行四边形性质可得P是QR的中点;在乙的作法中,根据平行线等分线段定理知QP=PR.
详解: (甲)由题意可知:四边形EFQP、EFPR均为平行四边形EF=QP=PR.
∴P点为QR的中点,即为所求,
故甲正确;
(乙)由题意可知:在△AQR中,∵AE=ER(即E为AR中点),且PE∥AQ,
∴P点为QR的中点,即为所求,
故乙正确.
∴甲、乙两人皆正确,故选A.
练习册系列答案
相关题目