题目内容
【题目】【问题提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.
【问题思考】聪明的小明用分类讨论的方法解决.
(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC的度数,解答过程如下:
设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,
∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°
问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC的度数;
【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.
【问题解决】综上所述:∠BOC的度数分别是 .
【答案】(1)②∠BOC=30°;(2)作图见解析,∠BOC的度数分别是14°,30°,10°,42°.
【解析】试题分析: (1)②由已知条件得出∠COD、∠AOD、∠AOB与∠BOC的关系,求出∠BOC的度数;
(2)分类讨论,根据∠AOD、∠BOD.∠AOB与∠BOC的关系,得出∠BOC的度数.
试题解析:
(1)②设∠BOC=α,则∠BOD=3α,若射线OD在∠AOB外部,如图2:
∠COD=∠BOD﹣∠BOC=2α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD= ,
∴∠AOB=∠BOD﹣∠AOD=3α﹣= =70°,
∴α=30°.∴∠BOC=30°;
(2)当射线OC在∠AOB外部时,根据题意,此时射线OC靠近射线OB,
∵∠BOC<45°,∠AOD=∠AOC,
∴射线OD的位置也只有两种可能;
①若射线OD在∠AOB内部,如图3所示,
则∠COD=∠BOC+∠COD=4α,
∴∠AOB=∠BOD+∠AOD=3α+4α=7α=70°,
∴α=10°,
∴∠BOC=10°;
②若射线OD在∠AOB外部,如图4,
则∠COD=∠BOC+∠BOD=4α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD=α,
∴∠AOB=∠BOD﹣∠AOD=3α﹣α=α=70°,
∴α=42°,
∴∠BOC=42°;
综上所述:∠BOC的度数分别是14°,30°,10°,42°.