题目内容

【题目】如图,菱形ABCD的对角线ACBD相交于点O,且DEACAEBD

1)求证:四边形AODE是矩形.

2)若AB=5BD=8,求矩形AODE的周长.

【答案】1)见解析;(214

【解析】

1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出ACBD,即∠AOD90°,继而可判断出四边形AODE是矩形;

2)由菱形的性质和勾股定理求出OB,得出OA,由矩形的性质即可得出答案.

1)证明:四边形ABCD是菱形,

∴∠AOD=90°

∵DE//ACAE//BD

四边形AODE是平行四边形.

四边形AODE是矩形. 

2四边形ABCD是菱形,

∴∠AOB=90°OB=OD=BD=×8=4

Rt△AOB中,

在矩形AODE中,

DE=OA=3AE=OD=4

∴ OA+OD+DE+AE=14

即矩形AODE的周长为14

练习册系列答案
相关题目

【题目】问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.

探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图①,连接边长为2的正三角形三条边的中点,从上往下看:

边长为1的正三角形,第一层有1个,第二层有3个,共有个;

边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.

探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网