题目内容
【题目】如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.
(1)求一次函数和二次函数的函数表达式;
(2)连接OA,求∠OAB的正弦值;
(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.
【答案】(1)y=x﹣4,y=﹣2x2+7x+4;(2);(3)存在,(6,0)或(20,0)
【解析】
(1)利用待定系数法求出一次函数的解析式,然后根据与x轴的交点y=0,求出C的坐标,然后根据A与C的坐标求出二次函数的解析式即可;
(2)过O作OH⊥BC,垂足为H,证明△BOC为等腰直角三角形,求出OH=BC=2,然后求出OA,即可求出∠OAB的正弦值;
(3)利用勾股定理求出AH,再求出AB=,然后分情况求出D点的坐标即可.
解:(1)∵一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点,
∴﹣5=﹣k+b,b=﹣4,k=1,
∴一次函数解析式为:y=x﹣4,
∵一次函数y=x﹣4与x轴交于点C,
∴y=0时,x=4,
∴C(4,0),
∵二次函数y=ax2+bx+4的图象经过点A(﹣1,﹣5)、点C(4,0),
∴,
解得a=﹣2,b=7,
∴二次函数的函数表达式为y=﹣2x2+7x+4;
(2)过O作OH⊥BC,垂足为H,
∵C(4,0),B(0,﹣4),
∴OB=OC=4,即△BOC为等腰直角三角形,
∴BC===4,
∴OH=BC=2,
由点O(0,0),A(﹣1,﹣5),得:OA=,
在Rt△OAH中,sin∠OAB===;
(3)存在,
由(2)可知,△OBC为等腰直角三角形,OH=BH=2,
在Rt△AOH中,根据勾股定理得:AH===3,
∴AB=AH﹣BH=,
∴当点D在C点右侧时,∠OBA=∠DCB=135°,
①当,即时,解得CD=2,
∵C(4,0),即OC=4,
∴OD=OC+CD=2+4=6,
此时D坐标为(6,0);
②当,即时,
解得CD=16,
∵C(4,0),即OC=4,∴OD=OC+CD=16+4=20,
此时D坐标为(20,0),
综上所述,若△BCD与△ABO相似,此时D坐标为(6,0)或(20,0).