题目内容
【题目】如图,中,,,的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束在这个运动过程中.
中点P经过的路径长______.
点C运动的路径长是______.
【答案】
【解析】(1)根据直角三角形斜边中线等于斜边一半,确定中点P的运动路径:以O为圆心,以OP为半径的圆弧,半径OP=AB=2,代入周长公式计算即可;
(2)分为两种情况:
①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长;
②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′;
分别计算并相加.
(1)如图1,∵∠AOB=90°,P为AB的中点,
∴OP=AB,
∵AB=,
∴OP=2,
∴AB中点P运动的轨迹是以O为圆心,以OP为半径的圆弧,
即AB中点P经过的路径长=×2×2π=π;
(2)①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,
点C运动的路径长是CC′的长,
∴AC′=OC=8,
∵AC′∥OB,
∴∠AC′O=∠COB,
∴cos∠AC′O=cos∠COB=,
∴,
∴OC′=4,
∴CC′=4-8;
②当A再继续向上移动,直到点B与O重合时,如图3,
此时点C运动的路径是从C′到C,长是CC′,
CC′=OC′-BC=4-4,
综上所述,点C运动的路径长是:4-8+4-4=8-12;
故答案为:(1). (2).
练习册系列答案
相关题目