题目内容

【题目】某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).

(1)请你设计出进货方案;

(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?

(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.

【答案】解:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,由题意,得

,解得:21≤x≤24。

x为整数,x=21,22,23,24。

有4种购买方案:

方案1:购A型电脑21台,B型电脑19台;

方案2:购A型电脑22台,B型电脑18台;

方案3:购A型电脑23台,B型电脑17台;

方案4:购A型电脑24台,B型电脑16台。

(2)由题意,得y=(3000﹣2500)x+(3200﹣2800)(40﹣x)=500x+16000﹣400x=100x+16000,

k=100>0,

y随x的增大而增大,

x=24时,y最大=18400元。

(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,由题意,得

2500a+2800b+500c=18400,

a≥2,b≥2,c≥1,且a、b、c为整数,

b=3。

当a=2,b=3时,

当a=3,b=3时,

当a=4,b=3时,

有2种购买方案:

方案1:购A型电脑2台,B型电脑3台,帐篷10顶,

方案2:购A型电脑3台,B型电脑3台,帐篷5顶

【解析】

试题分析:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,根据总进价不超过105700元和销售额不低于123200元建立不等式组,求出其解即可。

(2)根据利润等于售价﹣进价的数量关系分别表示出购买A型电脑的利润和B型电脑的利润就求其和就可以得出结论。

(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,a≥2,b≥2,c≥1,且a、b、c为整数,根据条件建立方程运用讨论法求出其解即可。 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网