题目内容

如图1,圆O1与圆O2都经过A、B两点,经过点A的直线CD与圆O1交于点C,与圆O2交于点D.经过点B的直线EF与圆O1交于点E,与圆O2交于点F.

(1)求证:CEDF;
(2)在图1中,若CD和EF可以分别绕点A和点B转动,当点C与点E重合时(如图2),过点E作直线MNDF,试判断直线MN与圆O1的位置关系,并证明你的结论.
(1)证明:连接AB;
∵四边形ABEC是⊙O1的内接四边形,
∴∠BAD=∠E.
又∵四边形ADFB是⊙O2的内接四边形,
∴∠BAD+∠F=180°.
∴∠E+∠F=180°.
∴CEDF.

(2)MN与⊙O1相切,
过E作⊙O1的直径EH,连接AH和AB;
∵MNDF,
∴∠MEA=∠D.
又∵∠D=∠ABE,∠ABE=∠AHE,
∴∠MEA=∠AHE.
∵EH为⊙O1的直径,
∴∠EAH=90°.
∴∠AHE+∠AEH=90°.
∴∠MEA+∠AEH=90°.
又∵EH为⊙O1的直径,
∴MN为⊙O1的切线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网