题目内容
【题目】(11·柳州)在平面直角坐标系中,将点A (-2,1)向左平移2个单位到点Q,则点Q的坐标为
A.(-2,3)B.(0,1)C.(-4,1)D.(-4,-1)
【答案】C
【解析】略
【题目】正方形ABCD中,AB=4,对角线交于点O,F是BO的中点,连接AF,求AF的长度.
【题目】如图,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD的内部,延长AF交CD于点G.(1)猜想并证明线段GF与GC的数量关系;(2)若将图1中的正方形改成矩形,其它条件不变,如图2,那么线段GF与GC之间的数量关系是否改变?请证明你的结论;(3)若将图1中的正方形改成平行四边形,其它条件不变,如图3,那么线段GF与GC之间的数量关系是否会改变?请证明你的结论.
【题目】如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( ) A.12B.24C.12 D.16
【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现商品的日销售单价x元与日销售量y个之间有如下关系:
(1)根据表中数据,在直角坐标系描出实数对(x,y)的对应点
(2)猜测并确定y与x之间的函数关系式,并画出图象;
(3)设经营此贺卡的销售利润为W元,试求出W与x之间的函数关系式,若物价居规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?
【题目】抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是( )
A.y=﹣(x﹣2)2+4B.y=﹣(x﹣2)2﹣2
C.y=﹣(x+2)2+4D.y=﹣(x+2)2﹣2
【题目】已知x(x+3)=1,则代数式2x2+6x﹣5的值为 .
【题目】如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.
【题目】某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.