题目内容
【题目】已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1
(1)求证:点P在直线l上。
(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标
(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.
【答案】
(1)
证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,
∴点P的坐标为(m,m﹣1),
∵当x=m时,y=x﹣1=m﹣1,
∴点P在直线l上
(2)
解:当m=﹣3时,抛物线解析式为y=x2+6x+5,
当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),
当x=0时,y=x2+6x+5=5,则C(0,5),
可得解方程组,解得或,
则P(﹣3,﹣4),Q(﹣2,﹣3),
作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,
∵OA=OC=5,
∴△OAC为等腰直角三角形,
∴∠ACO=45°,
∴∠MCE=45°﹣∠ACM,
∵QG=3,OG=2,
∴AG=OA﹣OG=3=QG,
∴△AQG为等腰直角三角形,
∴∠QAG=45°,
∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,
∵∠ACM=∠PAQ,
∴∠APF=∠MCE,
∴Rt△CME∽Rt△PAF,
∴=,
设M(x,x2+6x+5),
∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,
∴=,
整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,
∴点M的坐标为(﹣4,﹣3)
(3)
解:解方程组得或,则P(m,m﹣1),Q(m+1,m),
∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,
当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;
当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;
当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,
综上所述,m的值为0,,,,.
【解析】(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;
(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);
(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.
【题目】某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前,后引体向上的个数进行统计分析,得到乙组男生训练前,后引体向上的平均个数分别是6个和10个,及下面不完整的统计表和图的统计图.
甲组男生训练前、后引体向上个数统计表(单位:个)
甲组 | 男生A | 男生B | 男生C | 男生D | 男生E | 男生F | 平均个数 | 众数 | 中位数 |
训练前 | 4 | 6 | 4 | 3 | 5 | 2 | 4 | b | 4 |
训练后 | 8 | 9 | 6 | 6 | 7 | 6 | a | 6 | c |
(1)根据以上信息,解答下列问题: a= , b= , c=;
(2)甲组训练后引体向上的平均个数比训练前增长了%;
(3)你认为哪组训练效果好?并提供一个支持你观点的理由;
(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.:你同意他的观点吗?说明理由.
【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:
类别 | 重视 | 一般 | 不重视 |
人数 | a | 15 | b |
(1)求表格中a,b的值;
(2)请补全统计图;
(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.