题目内容
分解因式:4a(x-2)2-2b(2-x)3.
考点:因式分解-提公因式法
专题:
分析:首先提取公因式2(2-x),进而求出即可.
解答:解:4a(x-2)2-2b(2-x)3
=4a(2-x)2-2b(2-x)3
=2(2-x)[2a-b(2-x)]
=2(2-x)(2a-2b+bx).
=4a(2-x)2-2b(2-x)3
=2(2-x)[2a-b(2-x)]
=2(2-x)(2a-2b+bx).
点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.
练习册系列答案
相关题目
下列计算正确的有( )
(1)
+
=
;(2)2+
=5
;(3)3
-
=
;(4)
=
+
=2+5=7.
(1)
3 |
4 |
7 |
5 |
5 |
a |
b |
a-b |
| ||||
3 |
4 |
25 |
A、0个 | B、1个 | C、2个 | D、3个 |
已知两圆半径分别是方程x2-4x+3=0的两根,两圆圆心距为2,则两圆位置关系是( )
A、外切 | B、相交 | C、内切 | D、外离 |
下列四个条件中,能判定四边形是平行四边形的是( )
A、一组对边平行,另一组对边相等 |
B、两条对角线互相垂直 |
C、两条对角线相等 |
D、一组对边平行,一组对角相等 |