题目内容

【题目】如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.

(1)求证:CD是⊙O的切线;
(2)若AB=4,求图中阴影部分的面积.

【答案】
(1)证明:连接OD,

∵∠BCA=90°,∠B=30°,

∴∠OAD=∠BAC=60°,

∵OD=OA,

∴△OAD是等边三角形,

∴AD=OA=AC,∠ODA=∠O=60°,

∴∠ADC=∠ACD= ∠OAD=30°,

∴∠ODC=60°+30°=90°,

即OD⊥DC,

∵OD为半径,

∴CD是⊙O的切线


(2)解:∵AB=4,∠ACB=90°,∠B=30°,

∴OD=OA=AC= AB=2,

由勾股定理得:CD= = =2

∴S阴影=SODC﹣S扇形AOD= ×2×2 =2 π.


【解析】(1)证明切线须连半径,证直线和半径垂直;(2) 阴影部分的面积可转化为三角形面积减去扇形面积.
【考点精析】本题主要考查了含30度角的直角三角形和勾股定理的概念的相关知识点,需要掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网