题目内容
【题目】如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_____度.
【答案】45
【解析】分析:首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后可求出∠AFD,∠CFE的度数.
详解:连接AC,
∵菱形ABCD,∴AB=BC,∠B=∠D=60°,
∴△ABC为等边三角形,∠BCD=120°
∴AB=AC,∠ACF=∠BCD=60°,
∴∠B=∠ACF,
∵△ABC为等边三角形,
∴∠BAC=60°,即∠BAE+∠EAC=60°,
又∠EAF=60°,即∠CAF+∠EAC=60°,
∴∠BAE=∠CAF,
在△ABE与△ACF中
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∠EAF=∠D=60°,则△AEF是等边三角形,
∴∠AFE=60°,
又∠AFD=180°-45°-60°=75°,
则∠CFE=180°-75°-60°=45°.
故答案为:45.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】在2019年端午节前夕,某商场投入13800元资金购进甲、乙两种商品共500件,两种商品的成本价和销售价如下表所示:
商品 单价(元/件) | 成本价 | 销售价 |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)该商场购进两种商品各多少件?
(2)这批商品全部销售完后,该商场共获利多少元?