题目内容
【题目】如图,在△ABC中, BD是∠ABC的平分线,过点C作CE⊥BD,交 BD的延长线于点E,∠ABC=60°,∠ECD=15°.
(1)直接写出∠ADB的度数是_______;
(2)求证:BD=AB;
(3)若AB=2,求BC的长.
【答案】(1)75°;(2)证明见解析;(3)BC=.
【解析】
(1)先求出∠EDC的度数,从而求出∠EDC的对顶角∠ADB;
(2)根据条件求出∠ADB=75°,得出∠A=75°,随之即可解答.
(3)过点D作DF⊥BC,交BC于F点,根据条件求出FB,FC的长度即可解答.
(1)75°
∠EDC=90°-∠ECD=75°,∴∠ADB=∠EDC=75°.
(2)证明:∵BD平分∠ABC
∠ABC=60°
∴∠ABD=∠DBC=30°
∵∠ADB=75°
∴∠A=75°
∴∠A=∠ADB
∴AB=DB
(3)过点D作DF⊥BC,交BC于F点
∵DF⊥BC
∴∠DFB=∠DFC=90°
∵∠DBF=30°
∴DF=BD
∵BD=AB=2
∴DF =1
∴FB=
∵CE⊥BE
∴∠E=90°
∵∠DBC=30°
∴∠ECB=60°
∵∠ECD=15°
∴∠DCB=45°
∴∠DCF=∠FDC=45°
∴FC= FD=1
∴BC=
【题目】某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下(单位:分):
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
A班 | 100 | a | 93 | 93 | c |
B班 | 99 | 95 | b | 93 | 8.4 |
(1)求表中a、b、c的值;
(2)依据数据分析表,有人说:“最高分在A班,A班的成绩比B班好”,但也有人说B班的成绩要好,请给出两条支持B班成绩好的理由;