题目内容
【题目】如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=( )
A.2B.C.D.
【答案】D
【解析】
连接CF、FG,先证明△AFD∽△EAD,得出,结合DF=5EF,可计算出AD,AF的长,再证明△AFG∽△DFC,从而得出,求出AG,即可由DG=AD-AG解题.
解:连接CF、FG,
∵正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,
∴∠AFD=∠EAD=90°,又∠ADF=∠EDA,
∴△AFD∽△EAD,
∴,
又∵DF=5EF=5,∴EF=1,ED=6,
∴AD=,
在Rt△AFD中,AF==,
∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,
∴∠DAF=∠CDF,
∵四边形GFCD是⊙O的内接四边形,
∴∠FCD+∠DGF=180°,
∵∠FGA+∠DGF=180°,
∴∠FGA=∠FCD,
∴△AFG∽△DFC.
∴,
∴,
∴AG=,
∴DG=AD﹣AG=,
故选:D.
练习册系列答案
相关题目