题目内容
【题目】探究题:如图,在等腰三角形ABC中,AB=AC,其底边长为8 cm,腰长为5 cm,一动点P在底边上从点B出发向点C以0.25 cm/s的速度移动,请你探究:当点P运动多长时间时,点P与顶点A的连线PA与腰垂直.
【答案】当点P运动的时间为7 s或25 s时,点P与顶点A的连线与腰垂直.
【解析】
利用勾股定理求出AD的长,再利用勾股定理逆定理即可证明垂直.
(1)过点A作AD⊥BC于点D.
∵AB=AC,BC=8 cm,
∴BD=CD=BC=4 cm.
由勾股定理,得AD==3(cm).
分两种情况:(1)如图,当点P运动t秒后有PA⊥AC(P在线段BD上)时,
∵AP2=PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52,∴PD=2.25 cm,
∴BP=4-2.25=1.75,
∴0.25t=1.75,解得t=7.
(2)当点P运动t秒后有PA⊥AB(P在线段CD上)时,同理可得PD=2.25,∴BP=4+2.25=6.25,
∴0.25t=6.25,解得t=25.
综上所述,当点P运动的时间为7 s或25 s时,点P与顶点A的连线与腰垂直.
练习册系列答案
相关题目