题目内容

【题目】如图,直线AB,CD相交于点O,过点O作两条射线OM,ON,且∠AOM=∠CON=90°.

(1)若OC平分∠AOM,求∠AOD的度数;

(2)若∠1=∠BOC,求∠AOC和∠MOD.

【答案】(1)135°(2)150°

【解析】

①根据角平分线定义求出∠1=∠AOC=45°,代入∠AOD=180°-∠AOC求出即可;
②求出∠BOM=180°-90°=90°,根据∠1=∠BOC求出∠1=∠BOM=30°,即可求出答案.

(1)因为∠AOM=∠CON=90°,OC平分∠AOM,所以∠1=∠AOC=45°,所以∠AOD=180°-∠AOC=180°-45°=135°.

(2)因为∠AOM=90°,所以∠BOM=180°-90°=90°.因为∠1=∠BOC,所以∠1=∠BOM=30°,所以∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网