题目内容

【题目】《九章算术》是我国古代内容极为丰富的数学名著。书中有下列问题“今有勾八步,股十五步。问勾中容圆径几何?”其意思为今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是步。

【答案】6
【解析】解:如图所示:设⊙O内切于△ABC,半径为r,
在Rt△ABC中,AB=8,BC=15,由勾股定理得:
AC==17,
根据SABC=×AB×BC=×OD×AB+×BC×OE+×AC×OF,
可得:8×15=(8+15+17)×r,
解得:r=3,
所以直径d=2r=6
【考点精析】通过灵活运用勾股定理的概念,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网