题目内容
【题目】如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.
(1)在此运动过程中,∠BDA逐渐变 (填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD= .
(2)点D运动3s后到达图2位置,则CD= .此时△ABD和△DCE是否全等,请说明理由;
(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)
【答案】(1)大;75°;(2)3cm;△ABD和△DCE全等,理由见解析;(3)105°或 60°
【解析】
(1)根据点D的运动情况判断∠BDA的变化情况,根据等腰三角形的性质、三角形内角和定理求出∠BAD;
(2)根据点D的运动情况求出CD,利用ASA定理证明△ABD≌△DCE;
(3)分AD=AE、DA=DE、EA=ED三种情况,根据等腰三角形的性质结合角的计算求出∠BDA的度数.
解:(1)在此运动过程中,∠BDA逐渐变大,
D点运动到图1位置时,∠BAD=180°-∠B-∠BDA=75°,
故答案为:大;75°;
(2)点D运动3s后到达图2位置,CD=3cm,此时△ABD≌△DCE,
理由如下:∵AB=AC,∠B=30°,
∴∠C=30°,
∵CD=CA=3cm,
∴∠CAD=∠CDA=×(180°-30°)=75°,
∴∠ADB=105°,∠EDC=75°-30°=45°,
∴∠DEC=180°-45°-30°=105°,
∴∠ADB=∠DEC,
在△ABD和△DCE中,
,
∴△ABD≌△DCE(ASA),
(3)△ADE为等腰三角形分三种情况:
①当AD=AE时,∠ADE=30°,
∴∠AED=∠ADE=30°,∠DAE=180°-∠ADE-∠AED=120°,
∵∠BAC=180°-∠B-∠C=120°,D不与B、C重合,
∴AD≠AE;
②当DA=DE时,∠ADE=30°,
∴∠DAE=∠DEA=(180°-∠ADE)=75°,
∴∠BDA=∠DEC=180°-∠AED=105°;
③当EA=ED时,∠ADE=30°,
∴∠EAD=∠EDA=30°,
∴∠AED=180°-∠EAD-∠EDA=120°,
∴∠BDA=∠DEC=180°-∠AED=60°,
综上可知:在点D的运动过程中,△ADE的形状可以是等腰三角形,此时∠BDA的度数为60°或105°.