题目内容
【题目】为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
【答案】(1)共有6种方案
(2)当x=15时,W最小, 198万元
(3)再建设方案:①A型住房1套,B型住房3套;
②A型住房2套,B型住房2套;
③A型住房3套,B型住房1套.
【解析】
解:(1)设建设A型x套,则B型(40-x)套,
根据题意得,,
解不等式①得,x≥15,
解不等式②得,x≤20,
所以,不等式组的解集是15≤x≤20,
∵x为正整数,
∴x=15、16、17、18、19、20,
答:共有6种方案;
(2)设总投资W万元,建设A型x套,则B型(40-x)套,
W=5.2x+4.8×(40-x)=0.4x+192,
∵0.4>0,
∴W随x的增大而增大,
∴当x=15时,W最小,此时W最小=0.4×15+192=198万元;
(3)设再次建设A、B两种户型分别为a套、b套,
则(5.2-0.7)a+(4.8-0.3)b=15×0.7+(40-15)×0.3,
整理得,a+b=4,
a=1时,b=3,
a=2时,b=2,
a=3时,b=1,
所以,再建设方案:①A型住房1套,B型住房3套;
②A型住房2套,B型住房2套;
③A型住房3套,B型住房1套.
【题目】9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从苏州出发,1日到4日在北京旅游,8月5日上午返回苏州.
苏州与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:
住宿费 (2人一间的标准间) | 伙食费 | 市内交通费 | 旅游景点门票费 (身高超过1.2米全票) |
每间每天x元 | 每人每天100元 | 每人每天y元 | 每人每天120元 |
假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.
(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;
(2)他们往返都坐飞机 (成人票五五折),其他开支不变,至少要准备多少元?
(3)他们去时坐火车,回来坐飞机 (成人票五五折),其他开支不变,准备了14000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?