题目内容
【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
【答案】D
【解析】根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.
在△ABC中,∵∠ACB=90°,
∴∠BAC+∠ABC=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,
∴∠APB=135°,故①正确.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,
∴△APH≌△FPD,
∴PH=PD,故③正确.
∵△ABC的角平分线AD、BE相交于点P,
∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,
∴点P到BC、AC的距离相等,
∴点P在∠ACB的平分线上,
∴CP平分∠ACB,故④正确.
故选:D.
练习册系列答案
相关题目