题目内容

【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

(1)求甲、乙两种商品每件的进价分别是多少元?

(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.

【答案】(1)甲、乙两种商品每件的进价分别是30元、70元;(2)获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元

【解析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;

(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完甲、乙两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.

解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,

依题意得: ,解得:

答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.

(2)设该商场购进甲种商品m件,则购进乙种商品件,

由已知得:m≥4,

解得:m≥80.

设卖完甲、乙两种商品商场的利润为w,

则w=(40﹣30)m+(90﹣70)=﹣10m+2000,

∴当m=80时,w取最大值,最大利润为1200元.

故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网