题目内容

【题目】如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.

【答案】解:∵AD是△ABC的角平分线,∠BAC=66°,
∴∠DAC=∠BAD=33°,
∵CE是△ABC的高,∠BCE=40°,
∴∠B=50°,
∠ACB=180°-50°-66°=64°;
∴∠ADC=180°-64°-33°=83°,∠APC=123°
【解析】在直角三角形BCE中∠BCE=40°,可求出∠B=50°,由三角形内角和可求出∠BCA的度数;由AD是∠BAC的角平分线易求∠ADC的度数,再由CE⊥AB易求∠ACE的度数,从而可求∠APC的度数.
【考点精析】认真审题,首先需要了解三角形的“三线”(1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内),还要掌握三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网