题目内容

如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.
(1)证明:
如图,

过P做PFBC交AC于点F,
∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,
∴∠A=∠AFP=60°,
∴△APF是等边三角形;
∵AP=PF,AP=CQ,
∴PF=CQ
∴△PFD≌△QCD,
∴PD=DQ.

(2)△APF是等边三角形,
∵PE⊥AC,
∴AE=EF,
△PFD≌△QCD,
∴CD=DF,
DE=EF+DF=
1
2
AC,
∵AC=1,
DE=
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网