题目内容
【题目】在甲、乙两个不透明的盒子中,分别装有除颜色外其它均相同的小球,其中,甲盒子装有2个白球,1个红球:乙盒子装有2个红球,1个白球.
(1)将甲盒子摇匀后,随机取出一个小球是红球的概率是______;
(2)小华和小明商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则小明获胜,请用列表法或画出树状图的方法说明谁贏的可能性大.
【答案】(1);(2)小明贏的可能性大.
【解析】
(1)用甲盒中红球的个数除以甲盒中球的总个数即可;
(2)先列表得出所有等可能的结果数,然后找出小华和小明获胜的结果数,进一步即可进行判断.
解:(1)共有3种等可能结果,而摸出红球的结果有1种,∴随机取出一个小球是红球的概率=;
故答案为:;
(2)根据题意,列表如下:
由上表可知,共有9种等可能结果,其中颜色不相同的结果有5种,颜色相同的结果有4种,
∴P(颜色不相同)=,P(颜色相同)=,
∵,
∴小明赢的可能性大.
练习册系列答案
相关题目
【题目】某校兴趣小组以问卷调查的形式,随机调查了某地居民对武汉封城后续措施的了解情况,设置了多选题,并将调查结果绘制成如图不完整的统计图.
选项 | A | B | C | D | E |
后续措施 | 扩大宣传力度 | 分类隔离病人 | 封闭小区 | 聘请专业物资 | 采取其他措施 |
选择人次 | 25 | 85 | 15 | 35 |
已知平均每人恰好选择了两个选项,根据以上信息回答下列问题:
(1)求参与本次问卷调查的居民人数,并补全条形统计图;
(2)在扇形统计图中,求E选项对应圆心角α的度数;
(3)根据此次调查结果估计该地100万居民当中选择D选项的人数.