题目内容
【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
【答案】(1)DH=;(2);(3)存在,x为或或6
【解析】
(1)根据三角形相似的判定定理求出△BHD∽△BAC,根据相似三角形的性质求出DH的长;
(2)根据△RQC∽△ABC,根据三角形的相似比求出y关于x的函数关系式;
(3)画出图形,根据图形进行讨论: PQ=PR、 PQ=RQ、 PR=QR .
(1)在Rt△ABC中,
∵∠A=90°,AB=6,AC=8,
∴BC==10.
∵∠DHB=∠A=90°,∠B=∠B.
∴△BHD∽△BAC,
∴=,
∴DH=AC=×8=
(2)∵QR∥AB,
∴∠QRC=∠A=90°.
∵∠C=∠C,
∴△RQC∽△ABC,
∴=,∴=,
即y关于x的函数关系式为:y=x+6.
(3)存在,分三种情况:
①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.
∵∠1+∠2=90°,∠C+∠2=90°,
∴∠1=∠C.
∴cos∠1=cosC==,
∴=,
∴=,
∴x=.
②当PQ=RQ时,
﹣x+6=,
∴x=6.
③作EM⊥BC,RN⊥EM,
∴EM∥PQ,
当PR=QR时,则R为PQ中垂线上的点,
∴EN=MN,
∴ER=RC,
∴点R为EC的中点,
∴CR=CE=AC=2.
∵tanC==,
∴=,
∴x=.
综上所述,当x为或6或时,△PQR为等腰三角形.