ÌâÄ¿ÄÚÈÝ

´óÊýѧ¼Ò¸ß˹ÔÚÉÏѧ¶ÁÊéÊ±Ôø¾­Ñо¿¹ýÕâÑùÒ»¸öÎÊÌ⣺1+2+3+¡­+n=£¿¾­¹ýÑо¿£¬Õâ¸öÎÊÌâµÄ½áÂÛÊÇ1+2+3+¡­+n=
1
2
n(n+1)
£¬ÆäÖÐnÊÇÕýÕûÊý£®ÏÖÔÚÎÒÃÇÀ´Ñо¿Ò»¸öÀàËÆµÄÎÊÌ⣺1¡Á2+2¡Á3+¡­+n£¨n+1£©=£¿¹Û²ìÏÂÃæÈý¸öÌØÊâµÄµÈʽ£º
1¡Á2=
1
3
(1¡Á2¡Á3-0¡Á1¡Á2)
£¬
2¡Á3=
1
3
(2¡Á3¡Á4-1¡Á2¡Á3)
£¬
3¡Á4=
1
3
(3¡Á4¡Á5-2¡Á3¡Á4)
£¬
½«ÕâÈý¸öµÈʽµÄÁ½±ßÏà¼Ó£¬¿ÉÒԵõ½1¡Á2+2¡Á3+3¡Á4=
1
3
¡Á3¡Á4¡Á5=20
£®
¸ù¾ÝÉÏÊö¹æÂÉ£¬ÇëÄã¼ÆË㣺1¡Á2+2¡Á3+¡­+n£¨n+1£©=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
£»1¡Á2¡Á3+2¡Á3¡Á4+¡­+n£¨n+1£©£¨n+2£©=
1
4
n(n+1)(n+2)(n+3)
1
4
n(n+1)(n+2)(n+3)
£®
·ÖÎö£º¹Û²ìÒÑÖªµÄÈý¸öµÈʽ£¬µÃ³öÒ»°ãÐԵĹæÂÉ£¬¸ù¾ÝµÃ³öµÄ¹æÂɱíʾ³ö1¡Á2+2¡Á3+¡­+n£¨n+1£©µÄÿһÏµÖÏûºÏ²¢ºó¼´¿ÉµÃµ½½á¹û£»ÒÀ´ËÀàÍÆµÃµ½1¡Á2¡Á3=
1
4
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©£¬2¡Á3¡Á4=
1
4
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©£¬
×ܽá³öÒ»°ãÐÔ¹æÂÉ£¬½«¸÷Ïî±äÐκó£¬È¥À¨ºÅºÏ²¢¼´¿ÉµÃµ½½á¹û£®
½â´ð£º½â£º¸ù¾ÝÔĶÁ²ÄÁÏÖеÄÀý×ӵãº1¡Á2+2¡Á3+¡­+n£¨n+1£©
=
1
3
£¨1¡Á2¡Á3-0¡Á1¡Á2£©+
1
3
£¨2¡Á3¡Á4-1¡Á2¡Á3£©+¡­+
1
3
[n£¨n+1£©£¨n+2£©-£¨n-1£©n£¨n+1£©]
=
1
3
n£¨n+1£©£¨n+2£©£»
ÒÀ´ËÀàÍÆ£º1¡Á2¡Á3=
1
4
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©£¬2¡Á3¡Á4=
1
4
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©£¬
¡à1¡Á2¡Á3+2¡Á3¡Á4+¡­+n£¨n+1£©£¨n+2£©
=
1
4
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©+
1
4
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©+¡­+
1
4
[£¨n£¨n+1£©£¨n+2£©£¨n+3£©-£¨n-1£©n£¨n+1£©£¨n+2£©]=
1
4
n£¨n+1£©£¨n+2£©£¨n+3£©£®
¹Ê´ð°¸Îª£º
1
3
n£¨n+1£©£¨n+2£©£»
1
4
n£¨n+1£©£¨n+2£©£¨n+3£©
µãÆÀ£º´ËÌ⿼²éÁ˹æÂÉÐÍ£ºÊý×ֵı仯À࣬ÆäÖÐŪÇåÌâÒ⣬µÃ³öÒ»°ãÐԵĹæÂÉÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø