ÌâÄ¿ÄÚÈÝ
´óÊýѧ¼Ò¸ß˹ÔÚÉÏѧ¶ÁÊéÊ±Ôø¾Ñо¿¹ýÕâÑùÒ»¸öÎÊÌ⣺1+2+3+¡+n=£¿¾¹ýÑо¿£¬Õâ¸öÎÊÌâµÄ½áÂÛÊÇ1+2+3+¡+n=
n(n+1)£¬ÆäÖÐnÊÇÕýÕûÊý£®ÏÖÔÚÎÒÃÇÀ´Ñо¿Ò»¸öÀàËÆµÄÎÊÌ⣺1¡Á2+2¡Á3+¡+n£¨n+1£©=£¿¹Û²ìÏÂÃæÈý¸öÌØÊâµÄµÈʽ£º
1¡Á2=
(1¡Á2¡Á3-0¡Á1¡Á2)£¬
2¡Á3=
(2¡Á3¡Á4-1¡Á2¡Á3)£¬
3¡Á4=
(3¡Á4¡Á5-2¡Á3¡Á4)£¬
½«ÕâÈý¸öµÈʽµÄÁ½±ßÏà¼Ó£¬¿ÉÒԵõ½1¡Á2+2¡Á3+3¡Á4=
¡Á3¡Á4¡Á5=20£®
¸ù¾ÝÉÏÊö¹æÂÉ£¬ÇëÄã¼ÆË㣺1¡Á2+2¡Á3+¡+n£¨n+1£©=
n(n+1)(n+2)
n(n+1)(n+2)£»1¡Á2¡Á3+2¡Á3¡Á4+¡+n£¨n+1£©£¨n+2£©=
n(n+1)(n+2)(n+3)
n(n+1)(n+2)(n+3)£®
| 1 |
| 2 |
1¡Á2=
| 1 |
| 3 |
2¡Á3=
| 1 |
| 3 |
3¡Á4=
| 1 |
| 3 |
½«ÕâÈý¸öµÈʽµÄÁ½±ßÏà¼Ó£¬¿ÉÒԵõ½1¡Á2+2¡Á3+3¡Á4=
| 1 |
| 3 |
¸ù¾ÝÉÏÊö¹æÂÉ£¬ÇëÄã¼ÆË㣺1¡Á2+2¡Á3+¡+n£¨n+1£©=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
·ÖÎö£º¹Û²ìÒÑÖªµÄÈý¸öµÈʽ£¬µÃ³öÒ»°ãÐԵĹæÂÉ£¬¸ù¾ÝµÃ³öµÄ¹æÂɱíʾ³ö1¡Á2+2¡Á3+¡+n£¨n+1£©µÄÿһÏµÖÏûºÏ²¢ºó¼´¿ÉµÃµ½½á¹û£»ÒÀ´ËÀàÍÆµÃµ½1¡Á2¡Á3=
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©£¬2¡Á3¡Á4=
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©£¬
×ܽá³öÒ»°ãÐÔ¹æÂÉ£¬½«¸÷Ïî±äÐκó£¬È¥À¨ºÅºÏ²¢¼´¿ÉµÃµ½½á¹û£®
| 1 |
| 4 |
| 1 |
| 4 |
×ܽá³öÒ»°ãÐÔ¹æÂÉ£¬½«¸÷Ïî±äÐκó£¬È¥À¨ºÅºÏ²¢¼´¿ÉµÃµ½½á¹û£®
½â´ð£º½â£º¸ù¾ÝÔĶÁ²ÄÁÏÖеÄÀý×ӵãº1¡Á2+2¡Á3+¡+n£¨n+1£©
=
£¨1¡Á2¡Á3-0¡Á1¡Á2£©+
£¨2¡Á3¡Á4-1¡Á2¡Á3£©+¡+
[n£¨n+1£©£¨n+2£©-£¨n-1£©n£¨n+1£©]
=
n£¨n+1£©£¨n+2£©£»
ÒÀ´ËÀàÍÆ£º1¡Á2¡Á3=
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©£¬2¡Á3¡Á4=
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©£¬
¡à1¡Á2¡Á3+2¡Á3¡Á4+¡+n£¨n+1£©£¨n+2£©
=
£¨1¡Á2¡Á3¡Á4-0¡Á1¡Á2¡Á3£©+
£¨2¡Á3¡Á4¡Á5-1¡Á2¡Á3¡Á4£©+¡+
[£¨n£¨n+1£©£¨n+2£©£¨n+3£©-£¨n-1£©n£¨n+1£©£¨n+2£©]=
n£¨n+1£©£¨n+2£©£¨n+3£©£®
¹Ê´ð°¸Îª£º
n£¨n+1£©£¨n+2£©£»
n£¨n+1£©£¨n+2£©£¨n+3£©
=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| 1 |
| 3 |
ÒÀ´ËÀàÍÆ£º1¡Á2¡Á3=
| 1 |
| 4 |
| 1 |
| 4 |
¡à1¡Á2¡Á3+2¡Á3¡Á4+¡+n£¨n+1£©£¨n+2£©
=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
¹Ê´ð°¸Îª£º
| 1 |
| 3 |
| 1 |
| 4 |
µãÆÀ£º´ËÌ⿼²éÁ˹æÂÉÐÍ£ºÊý×ֵı仯À࣬ÆäÖÐŪÇåÌâÒ⣬µÃ³öÒ»°ãÐԵĹæÂÉÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿