题目内容

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=
1
2
n(n+1)
,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)

读完这段材料,请你思考后回答:
(1)5×6=
 
=
 

将前面两个等式的两边相加,可以得到
1×2+2×3=
1
3
×2×3×4=8
将这三个等式的两边相加,可以得到
1×2+2×3+3×4=
1
3
×3×4×5=20

读完这段材料,请你思考后回答:
(2)1×2+2×3+…+100×101=
 
=
 

(3)1×2+2×3+…+n(n+1)=
 
=
 
分析:(1)根据已知可以得出,1×2+2×3+3×4+4×5等于
1
3
×4×5×6,即每一项增加1,即可得出答案;
(2)根据(1)中结论即可得出规律是后三项加1的乘积;
(3)即可得出一般性规律,1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2).
解答:解:(1)原式=
1
3
(5×6×7-4×5×6)=30,
(2)原式=
1
3
×100×101×102=343400;
(3)原式=
1
3
n(n+1)(n+2)=
1
3
n3+n2+
2n
3

故答案为
1
3
(5×6×7-4×5×6),30;
1
3
×100×101×102,343400; 
1
3
n(n+1)(n+2),
1
3
n3+n2+
2n
3
点评:此题主要考查了数字的规律性问题,这是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出变化规律是难点中的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网