题目内容
【题目】如图,在四边形ABCD中,AB∥CD,AB=CD,∠A=∠ADC,E,F分别为AD,CD的中点,连接BE,BF,延长BE交CD的延长线于点M.
(1)求证:四边形ABCD为矩形;
(2)若MD=6,BC=12,求BF的长度.
【答案】(1)详见解析;(2).
【解析】
(1)先求出四边形ABCD是平行四边形,再根据矩形的判定得出即可;
(2)求出DM=AB=6,根据矩形的性质得出CD=AB=6,求出CF,根据勾股定理求出BF即可.
(1)证明:∵在四边形ABCD中,AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A+∠ADC=180°,
∵∠A=∠ADC,
∴∠A=90°,
∴四边形ABCD是矩形;
(2)解:∵AB∥CD,
∴∠ABE=∠M,
∵E为AD的中点,
∴AE=DE.
在△ABE和△DME中
,
∴△ABE≌△DME(AAS),
∴AB=DM=6,
∵四边形ABCD是矩形,
∴DC=AB=DM=6,∠C=90°,
∵F为CD的中点,
∴CF=CD=3,
在Rt△BCF中,由勾股定理得:BF=.
练习册系列答案
相关题目
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.