题目内容
【题目】在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
… | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | -3 | 0 | 3 | … |
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;
①该函数图象是轴对称图形,它的对称轴为y轴;( )
②该函数在自变量的取值范围内,有最大值和最小值,当时,函数取得最大值3;当时,函数取得最小值-3;( )
③当或时,y随x的增大而减小;当时,y随x的增大而增大;( )
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集(保留1位小数,误差不超过0.2).
【答案】(1),;(2)①× ②√ ③√;(3)x<1或0.3<x<1.8.
【解析】
(1)代入x=3和x=-3即可求出对应的y值,再补全函数图象即可;
(2)结合函数图象可从增减性及对称性进行判断;
(3)根据图象求解即可.
解:(1)当x=-3时,,
当x=3时,,
函数图象如下:
(2)①由函数图象可得它是中心对称图形,不是轴对称图形;
故答案为:× ,
②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当时,函数取得最大值3;当时,函数取得最小值-3;
故答案为:√ ,
③观察函数图象可得:当或时,y随x的增大而减小;当时,y随x的增大而增大;
故答案为:√.
(3),
时,
得,,,
故该不等式的解集为: x<1或0.3<x<1.8.
练习册系列答案
相关题目