题目内容
【题目】受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.
【答案】
(1)解:由表格中数据可猜测,y1是x的一次函数.
设y1=kx+b
则 解得:
∴y1=2x+54,
经检验其它各点都符合该解析式,
∴y1=2x+54(1≤x≤7,且x为整数)
(2)解:设去年第x月的利润为w万元.
当1≤x≤7,且x为整数时,
w=p1(100﹣8﹣y1)=(0.1x+1.1)(92﹣2x﹣54)=﹣0.2x2+1.6x+41.8=﹣0.2(x﹣4)2+45,
∴当x=4时,w最大=45万元;
当8≤x≤12,且x为整数时,
w=p2(100﹣8﹣y2)=(﹣0.1x+3)(92﹣x﹣62)=0.1x2﹣6x+90=0.1(x﹣30)2,
∴当x=8时,w最大=48.4万元.
∴该厂去年8月利润最大,最大利润为48.4万元
【解析】(1)由表格中数据可猜测,y1是x的一次函数.把表格(1)中任意两组数据代入直线解析式可得y1的解析式.(2)分情况探讨得:1≤x≤7时,利润=p1×(售价﹣各种成本);80≤x≤12时,利润=p2×(售价﹣各种成本);并求得相应的最大利润即.