题目内容
【题目】在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P`的坐标定义如下:当时,P`点坐标为(a,-b);当时,P`点坐标为(b,-a)。线段l:上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则k的取值范围是( )
A. B. 或 C. D.
【答案】A
【解析】
根据题意画出图形,确定变换分界点,根据条件,从直线y=kx+4的变动范围确定k的取值范围.
由a≥b,得x≥,解得x≥2,
所以,线段变换的分界点是(2,2)
当a≥b,变换得到新图形是线段DE;当a<b时,变换得到新图形是线段DC.
且D(2,-2),C(4,2),E(8,2).
直线y=kx+4与y轴相交于(0,4),如图,假如直线与新图形有两个交点,那么2<x<4,-2<y<2.
因为,
所以,由上述可得,
即,
故选:A
【题目】某同学上学期的数学历次测验成绩如下表所示:
测验类别 | 平时测验 | 期中测验 | 期末测验 | ||
第1次 | 第2次 | 第3次 | |||
成绩 | 100 | 106 | 106 | 105 | 110 |
(1)该同学上学期5次测验成绩的众数为 ,中位数为 ;
(2)该同学上学期数学平时成绩的平均数为 ;
(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。
【题目】受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.