题目内容
【题目】填写理由:如图所示
∵DF∥AC(已知),
∴∠D+∠DBC=180°.( )
∵∠C=∠D(已知),
∴∠C+ =180°.( )
∴DB∥EC( )
∴∠D=∠CEF.( )
【答案】两直线平行,同旁内角互补;∠DBC,等量代换;同旁内角互补,两直线平行;两直线平行,同位角相等.
【解析】
利用平行线的判定方法及性质解答即可.
解:∵DF∥AC(已知),∴∠D+∠DBC=180°.(两直线平行,同旁内角互补)
∵∠C=∠D(已知),
∴∠C+∠DBC=180°.(等量代换)
∴DB∥EC(同旁内角互补,两直线平行)
∴∠D=∠CEF.(两直线平行,同位角相等)
故答案为:两直线平行,同旁内角互补;∠DBC,等量代换;同旁内角互补,两直线平行;两直线平行,同位角相等.
练习册系列答案
相关题目
【题目】受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.