题目内容

【题目】如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=EAF=45°,则AF的长为_____

【答案】

【解析】AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.

AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,

∵四边形ABCD是矩形,

∴∠D=BAD=B=90°,AD=BC=4,

NF=x,AN=4﹣x,

AB=2,

AM=BM=1,

AE=,AB=2,

BE=1,

ME=

∵∠EAF=45°,

∴∠MAE+NAF=45°,

∵∠MAE+AEM=45°,

∴∠MEA=NAF,

∴△AME∽△FNA,

解得:x=

AF=

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网