题目内容

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

1)小明总共剪开了   条棱.

2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补 全.(请在备用图中画出所有可能)

3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.

【答案】18,

2)四种可能,图形见详解

3128000 cm2

【解析】

1)根据展开后的图形即可解题,2)根据长方体的展开图的特点,进行画图,注意考虑周全.,3)利用底面是正方形, 最长的一条棱是最短的一条棱的4,棱长的和是720cm,求出长宽高,即可解题.

解:(1)由展开图发现,小明一共剪开了8条棱,

故答案是8,

2)如下图,四种可能,

3)∵长方体纸盒的底面是一个正方形,

∴设最短的棱长即高为acm,则长与宽相等为4acm.

∵长方体纸盒所有棱长的和是720cm,∴4(a+4a+4a)=720,解得a=20

这长方体纸盒的体积为20×80×80=128000cm2

故答案是8;四种情况;128000 cm2

练习册系列答案
相关题目

【题目】已知:如图,在半径为4O中,ABCD是两条直径,MOB的中点,CM的延长线交O于点E,且EMMC.连接DEDE=

(1)求证:AMMB=EMMC;

(2)求EM的长;

(3)求sin∠EOB的值.

【答案】(1)证明见解析(2)4(3)

【解析】1)连接ACEB点,那么只需要求出△AMC△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB

2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AMBM的长度,然后结合(1)的结论,很容易就可求出EM的长度;

3)过点EEF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.

型】解答
束】
21

【题目】为大力弘扬奉献、友爱、互助、进步的志愿服务精神,传播奉献他人、提升自我的志愿服务理念,合肥市某中学利用周末时间开展了助老助残、社区服务、生态环保、网络文明四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)请把折线统计图补充完整;

(2)求扇形统计图中,网络文明部分对应的圆心角的度数;

(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网