题目内容

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

【答案】(1)证明见解析;(2)72°.

【解析】

根据平行线的性质推出∠1=∠ACD,求出∠2=∠ACD,根据∠2+∠CAF=∠ACD+∠CAF推出∠DAC=∠4,求出∠DAC=∠3,根据平行线的判定得出即可.根据平行线性质可求得∠D=∠DCE.

(1)证明:∵AB∥CD,

∴∠1=∠ACD,

∵∠BCD=∠4+∠E,

∵∠3=∠4,

∴∠1=∠E,

∵∠1=∠2,

∴∠2=∠E,

∴AD∥BE;

(2)解:∵∠B=∠3=2∠2,∠1=∠2,

∴∠B=∠3=2∠1,

∵∠B+∠3+∠1=180°,

2∠1+2∠1+∠1=180°,解得∠1=36°,

∴∠B=2∠1=72°,

∵AB∥CD,

∴∠DCE=∠B=72°,

∵AD∥BE,

∴∠D=∠DCE=72°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网