题目内容
如图1,在x轴正半轴上以OB为斜边、BC为直角边向第一象限分别作等腰Rt△AOB和Rt△CDB. OA=8,BC=4,在∠ABD内有一半径为1,且与AB、BD相切的⊙P.
(1)写出⊙P的圆心坐标;
(2)若△CDB在x轴上以每秒2个单位的速度向左匀速平移,⊙P同时相应在BA和BD上滑动,且保持与BA、BD相切,至⊙P终止运动.设运动时间为t秒,试用含t的代数式表示P点坐标;并证明P点的横、纵坐标之和为定值;
(3)如图2,过D点作x轴的平行线交AB于E,D’B’与AB交于M,在满足(2)的前提下,t取何值时,⊙P可成为△D’EM的内切圆;如果⊙P与DE相切于点F,求△AEF的面积.
(1)写出⊙P的圆心坐标;
(2)若△CDB在x轴上以每秒2个单位的速度向左匀速平移,⊙P同时相应在BA和BD上滑动,且保持与BA、BD相切,至⊙P终止运动.设运动时间为t秒,试用含t的代数式表示P点坐标;并证明P点的横、纵坐标之和为定值;
(3)如图2,过D点作x轴的平行线交AB于E,D’B’与AB交于M,在满足(2)的前提下,t取何值时,⊙P可成为△D’EM的内切圆;如果⊙P与DE相切于点F,求△AEF的面积.
(1)作PM⊥AB,
∵圆P与AB、BD与P相切,
∴BP平分∠ABD,
∵∠ABO=∠DBC,
∴∠ABD=90°,
∴∠PBA=45°,
∴∠ABO+∠PBA=90°,即BP⊥x轴,
而BP=
2 |
2 |
2 |
2 |
∴点P的横坐标为8
2 |
2 |
2 |
2 |
(2)根据题意可知,点P的横坐标为8
2 |
2 |
2 |
2 |
因为8
2 |
2 |
2 |
(3)当⊙P成为△D′EM的内切圆时,D′M=2+
2 |
2 |
2 |
2 |
即2t=6-2
2 |
2 |
S△AEF=
1 |
2 |
2 |
2 |
2 |
2 |
练习册系列答案
相关题目