题目内容
【题目】某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)
销售时段 | 销售数量 | 销售收入 | |
A种型号 | 种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【答案】(1)A、B两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A种型号电风扇37台时,采购金额不多于7500元;(3)能,方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得得到方程,求解即可得到答案.
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.
由题意得160a+120(30﹣a)≤7500,求解即可得到答案.
(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,
由于a≤37,且a应为整数,所以在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种.
解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:,解得:,
答:A、B两种型号电风扇的销售单价分别为200元、150元.
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.
依题意得:160a+120(30﹣a)≤7500,解得:a≤37.
答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.
(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,
∵a≤37,且a应为整数,
∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:
当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;
当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.