题目内容
【题目】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:
(1)BC=AD;
(2)△OAB是等腰三角形.
【答案】
(1)证明:∵AC⊥BC,BD⊥AD,
∴∠ADB=∠ACB=90°,
在Rt△ABC和Rt△BAD中,
∵ ,
∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD
(2)证明:∵Rt△ABC≌Rt△BAD,
∴∠CAB=∠DBA,
∴OA=OB,
∴△OAB是等腰三角形
【解析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.
练习册系列答案
相关题目