题目内容
【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示8,点C表示16,我们称点A和点C在数轴上相距22个长度单位.动点P从点A出发,以1单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速:同时,动点Q从点C出发,以2单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
【答案】(1)点P从点A运动至C点需要的时间是32秒;(2)相遇点M所对应的数是0;(3)t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
【解析】
(1)根据时间=,分段求出每段折线上的时间再求和即可;
(2)P、Q两点相遇时,所用时间相等,根据等量关系建立一元一次方程;
(3)根据P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等可以判断时间相等,根据等量关系建立一元一次方程,同时需要分情况讨论,即虽然PO=OP,但PO和OP不是同一条线段.
解:(1)点P从点A运动至C点需要的时间
t=6÷1+8÷0.5+(16﹣8)÷1=32(秒)
答:点P从点A运动至C点需要的时间是32秒
(2)由题可知,P,Q两点相遇在线段OB上于M处,设OM=x,则
6÷1+x÷0.5=8÷2+(8﹣x)÷4
解得x=0
∴OM=0表示P,Q两点相遇在线段OB上于O处,即相遇点M所对应的数是0.
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有2种可能:
①动点P在AO上,动点Q在CB上,
则:6﹣t=8﹣2t
解得:t=2.
②动点P在AO上,动点Q在BO上,
则:6﹣t=4(t﹣4)
解得:t=4.4
答:t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.