题目内容
1.如图是一个圆心角为90°的扇形,且OA=OB=10cm,若空白部分是正方形,则阴影部分的面积是多少?(π取3.14)分析 连结OC,交圆上于点C.因为空白部分是正方形,所以在三角形OBC中,有OB2+BC2=OC2,即2BC2=100,所以BC2=50,这样就求出了正方形的面积,然后用扇形面积减去正方形面积即可.
解答 解:连结OC,交圆上于点C.![]()
因为OA=OB=10cm,所以OC=10cm,
因为空白部分是正方形,
所以在三角形OBC中,有OB2+BC2=OC2,
即2BC2=100,所以BC2=50,
也就是正方形的面积是50平方厘米.
阴影面积为:
3.14×102×$\frac{1}{4}$-50
=78.5-50
=28.5(平方厘米).
答:阴影部分的面积是28.5平方厘米.
点评 此题解答的关键在于巧妙地求出半径的平方,进而得解.
练习册系列答案
相关题目
12.在除法中,每次做商后,余下的数与除数相比,结果都是( )
| A. | 比除数大 | B. | 比除数小 | C. | 与除数相等 | D. | 不能确定 |
6.可可的体重比乐乐重$\frac{1}{10}$,皮皮的体重比可可轻$\frac{1}{10}$,皮皮的体重与乐乐比,结果是( )
| A. | 皮皮重 | B. | 乐乐重 | C. | 一样重 | D. | 无法比较 |