题目内容

(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
     
(2)6.8×
8
25
+0.32×4.2-8÷25

(3)
1
1×5
+
1
5×9
+
1
9×13
+…+
1
33
×
1
37
    
(4)1
1
4
-
9
20
+
11
30
-
13
42
+
15
56
分析:(1)由题意可知:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
4×5
=
1
4
-
1
5
1
5×6
=
1
5
-
1
6
1
98×99
=
1
98
-
1
99
1
99×100
=
1
99
-
1
100
,据此将原式变形后,进而即可逐步得解.
(2)因为0.32=
8
25
,8÷25=
8
25
,于是原式可以变形为6.8+
8
25
+
8
25
×4.2-
8
25
,进而利用乘法分配律即可得解.
(3)由题意可知:
1
1×5
=
1
5
=1-
4
5
=
1
4
×(1-
1
5
),同理
1
5×9
=
1
4
×(
1
5
-
1
9
),
1
9×13
=
1
4
×(
1
9
-
1
13
),
1
33
×
1
37
=
1
4
×(
1
33
-
1
37
),据此将原式变形后,进而即可逐步得解.
(4)因为
9
20
=
1
4
+
1
5
11
30
=
1
5
+
1
6
13
42
=
1
6
+
1
7
15
56
=
1
7
+
1
8
,则问题可以轻松得解.
解答:解:(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100

=(1-
1
2
)+(
1
2
-
1
3
)+(
1
4
-
1
5
)+(
1
5
-
1
6
)+…(
1
98
-
1
99
)+(
1
99
-
1
100
),
=1-
1
100

=
99
100
.     

(2)6.8×
8
25
+0.32×4.2-8÷25,
=6.8×
8
25
+
8
25
×4.2-
8
25

=
8
25
×(6.8+4.2-1),
=
8
25
×10,
=3.2.    

(3)
1
1×5
+
1
5×9
+
1
9×13
+…+
1
33
×
1
37

=
1
4
×(1-
1
5
)+
1
4
×(
1
5
-
1
9
)+
1
4
×(
1
9
-
1
13
)+…
1
4
×(
1
33
-
1
37
),
=
1
4
×(1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
33
-
1
37
),
=
1
4
×(1-
1
37
),
=
1
4
×
36
37

=
9
37
.   

(4)1
1
4
-
9
20
+
11
30
-
13
42
+
15
56

=1
1
4
-(
1
4
+
1
5
)+(
1
5
+
1
6
)-(
1
6
+
1
7
)+(
1
7
+
1
8
),
=1
1
4
-
1
4
-
1
5
+
1
5
+
1
6
-
1
6
-
1
7
+
1
7
+
1
8

=1+
1
8

=1
1
8
点评:此题主要依据裂项相消法求解,得出相消得项,问题即可逐步得解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网