题目内容
1978×298129812981-2980×197719771977=
分析:由于298129812981=2981×100010001,197719771977=1997×100010001,然后据此根据乘法分配律进行巧算即可.
解答:解:1978×298129812981-2980×197719771977
=1978×2981×100010001-2980×1977×100010001,
=(1978×2981-2980×1977)×100010001,
=[1978×2981-(1977×2981-1977)]×100010001,
=[1978×2981-1977×2981+1977]×100010001,
=[(1978-1977)×2981+1977]×100010001,
=[2981+1977]×100010001,
=4958×100010001,
=495849584958.
=1978×2981×100010001-2980×1977×100010001,
=(1978×2981-2980×1977)×100010001,
=[1978×2981-(1977×2981-1977)]×100010001,
=[1978×2981-1977×2981+1977]×100010001,
=[(1978-1977)×2981+1977]×100010001,
=[2981+1977]×100010001,
=4958×100010001,
=495849584958.
点评:完成此类题目的关键是要认真分析式中数的据特点,发现其内在联系,然后找到合适的巧算方法.
练习册系列答案
相关题目