题目内容

1
2
+
5
6
+
11
12
+
19
20
+
29
30
+…+
9701
9702
+
9899
9900
分析:通过分析发现,式中的加数都可表示为1-
1
n
r的形式,如
1
2
=1-
1
2
,所以原式=(1-
1
2
)+(1-
1
6
)+(1-
1
12
)+…+(1-
1
9900
)=1×99-(
1
2
+
1
6
+
1
12
+…+
1
9900
),由于括号中的分数都为
1
n((n+1)
的形式,所以可根据分数巧算公式
1
n((n+1)
=
1
n
-
1
n+1
进行巧算.
解答:解:
1
2
+
5
6
+
11
12
+
19
20
+
29
30
+…+
9701
9702
+
9899
9900

=(1-
1
2
)+(1-
1
6
)+(1-
1
12
)+…+(1-
1
9900

=1×99-(
1
2
+
1
6
+
1
12
+…+
1
9900
),
=99-(
1
1×2
+
1
2×3
+
1
3×4
…+
1
99×100
),
=99-(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
99
-
1
100
),
=99-(1-
1
100
),
=99-
99
100

=98
1
100
点评:在认真分析式中数据的基础上发现式中数据特点及内在联系是完成本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网