题目内容
计算:(要求写出计算过程)
(1)51
×
+61
×
+71
×
(2)1-
×{1-
×[1-
×(1-
)]}
(3)[1-(
+
)×4]÷(
÷
)
(4)2008×1
÷1
-100
÷
.
(1)51
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
| 5 |
| 6 |
| 1 |
| 6 |
| 6 |
| 7 |
(2)1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
(3)[1-(
| 1 |
| 12 |
| 1 |
| 15 |
| 3 |
| 10 |
| 9 |
| 25 |
(4)2008×1
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 5 |
| 1 |
| 20 |
分析:(1)根据数字特点,把原式变为(50+
)×
+(60+
)×
+(70+
)×
,运用乘法分配律简算,然后运用加法交换律与结合律简算;
(2)先算小括号内的,再算中括号内的,然后算大括号内的乘法,再算大括号内的减法,再算括号外的乘法,最后算括号外的减法;
(3)两个小括号同时计算,再算中括号内的乘法,然后算中括号内的减法,最后算括号外的除法;
(4)先算乘除,再算减法,注意约分.
| 5 |
| 4 |
| 4 |
| 5 |
| 6 |
| 5 |
| 5 |
| 6 |
| 7 |
| 6 |
| 6 |
| 7 |
(2)先算小括号内的,再算中括号内的,然后算大括号内的乘法,再算大括号内的减法,再算括号外的乘法,最后算括号外的减法;
(3)两个小括号同时计算,再算中括号内的乘法,然后算中括号内的减法,最后算括号外的除法;
(4)先算乘除,再算减法,注意约分.
解答:解:(1)51
×
+61
×
+71
×
,
=(50+
)×
+(60+
)×
+(70+
)×
,
=(40+1)+(50+1)+(60+1),
=150+3,
=153;
(2)1-
×{1-
×[1-
×(1-
)]},
=1-
×{1-
×[1-
×
]},
=1-
×{1-
×[1-
]},
=1-
×{1-
×
},
=1-
×{1-
},
=1-
×
,
=1-
,
=
;
(3)[1-(
+
)×4]÷(
÷
),
=[1-
×4]÷(
×
),
=[1-
]÷
,
=
×
,
=
;
(4)2008×1
÷1
-100
÷
,
=2008×
×
-
×20,
=2008×
×
-2008,
=2008×(
×
-1)
=2008×
,
=251.
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
| 5 |
| 6 |
| 1 |
| 6 |
| 6 |
| 7 |
=(50+
| 5 |
| 4 |
| 4 |
| 5 |
| 6 |
| 5 |
| 5 |
| 6 |
| 7 |
| 6 |
| 6 |
| 7 |
=(40+1)+(50+1)+(60+1),
=150+3,
=153;
(2)1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 4 |
| 5 |
=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 4 |
| 5 |
=1-
| 1 |
| 2 |
| 4 |
| 15 |
=1-
| 1 |
| 2 |
| 11 |
| 15 |
=1-
| 11 |
| 30 |
=
| 19 |
| 30 |
(3)[1-(
| 1 |
| 12 |
| 1 |
| 15 |
| 3 |
| 10 |
| 9 |
| 25 |
=[1-
| 3 |
| 20 |
| 3 |
| 10 |
| 25 |
| 9 |
=[1-
| 3 |
| 5 |
| 5 |
| 6 |
=
| 2 |
| 5 |
| 6 |
| 5 |
=
| 12 |
| 25 |
(4)2008×1
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 5 |
| 1 |
| 20 |
=2008×
| 3 |
| 2 |
| 3 |
| 4 |
| 502 |
| 5 |
=2008×
| 3 |
| 2 |
| 3 |
| 4 |
=2008×(
| 3 |
| 2 |
| 3 |
| 4 |
=2008×
| 1 |
| 8 |
=251.
点评:此题主要考查分数的四则混合运算的运算顺序和应用运算定律进行简便计算.
练习册系列答案
相关题目