题目内容

2001
2002
×2003            
5
12
×
1
3
+
7
12
÷3       
③36×
1
4
+17×0.25+47×25%
④99×(1-
1
2
)×(1-
1
3
)×(1-
1
4
)×…×(1-
1
99
)      
1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42
分析:①把2003看作(2002+1),运用乘法分配律简算;
②把除法改为乘法,运用乘法分配律简算;
③把分数和百分数化为小数,运用乘法分配律简算;
④先算出括号内的结果,通过约分计算即可;
⑤通过观察,每个分数都可以分解成两个分数相减的形式,然后通过分数加减相互抵消,求得结果.
解答:解:①
2001
2002
×2003,
=
2001
2002
×(2002+1),
=
2001
2002
×2002+
2001
2002
×1,
=2001+
2001
2002

=2001
2001
2002


5
12
×
1
3
+
7
12
÷3,
=
5
12
×
1
3
+
7
12
×
1
3

=(
5
12
+
7
12
)×
1
3

=1×
1
3

=
1
3


③36×
1
4
+17×0.25+47×25%,
=36×0.25+17×0.25+47×0.25,
=(36+17+47)×0.25,
=100×0.25,
=25;

④99×(1-
1
2
)×(1-
1
3
)×(1-
1
4
)×…×(1-
1
99
),
=99×
1
2
×
2
3
×
3
4
×…×
98
99

=99×
1
99

=1;

1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+
1
6
-
1
7

=1-
1
7

=
6
7
点评:完成此题,应仔细观察算式特点,运用运算定律或运算技巧,灵活解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网