题目内容
计算:
+
+
+…+
(结果可以用阶乘和乘方表示)
| 3!×1 |
| 3 |
| 4!×2 |
| 32 |
| 5!×3 |
| 33 |
| 102!×100 |
| 3100 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:由题意得,a1=
=1×3!×(
)1
a2=
=2×4!×(
)2=5!×(
)2-4!×(
)1
a3=
=3×5!×(
)3=6!×(
)3-5!×(
)2
…
a100=
=103×(
)100-102!×(
)99
计算即可.
| 3!×1 |
| 3 |
| 1 |
| 3 |
a2=
| 4!×2 |
| 32 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
a3=
| 5!×3 |
| 33 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
…
a100=
| 102!×100 |
| 3100 |
| 1 |
| 3 |
| 1 |
| 3 |
计算即可.
解答:
解:a1=
=1×3!×(
)1
a2=
=2×4!×(
)2=5!×(
)2-4!×(
)1
a3=
=3×5!×(
)3=6!×(
)3-5!×(
)2
…
a100=
=103×(
)100-102!×(
)99
所以,
+
+
+…+
=1×3!×(
)1+5!×(
)2-4!×(
)1+6!×(
)3-5!×(
)2+…+103×(
)100-102!×(
)99
=103!×(
)100-4!×
+3!×
=103!×(
)100-4×3×2×
+3×2×
=103!×(
)100-6
| 3!×1 |
| 3 |
| 1 |
| 3 |
a2=
| 4!×2 |
| 32 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
a3=
| 5!×3 |
| 33 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
…
a100=
| 102!×100 |
| 3100 |
| 1 |
| 3 |
| 1 |
| 3 |
所以,
| 3!×1 |
| 3 |
| 4!×2 |
| 32 |
| 5!×3 |
| 33 |
| 102!×100 |
| 3100 |
=1×3!×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=103!×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=103!×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=103!×(
| 1 |
| 3 |
点评:把原式进行适当变形,简算即可.
练习册系列答案
相关题目