题目内容
2009×(1+
+
+…+
)-[1+(1+
)+(1+
+
)+…+(1+
+
+…+
)]= .
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:此题数字很有规律,可把原式变为2009×(1+
+
+…+
)-2008×1-(2008-1)×
-(2008-2)×
+…-(2008-2007)×
,进一步计算即可.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
解答:
解:2009×(1+
+
+…+
)-[1+(1+
)+(1+
+
)+…+(1+
+
+…+
)]
=2009×(1+
+
+…+
)-2008×1-(2008-1)×
-(2008-2)×
+…-(2008-2007)×
=(2009-2008)×1+(2009-2008+1)×
+(2009-2008+2)×
+…+(2009-2008+2007)×
=1+2×
+3×
+…+2008×
=1+1+1…+1
=2008
故答案为:2008.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
=2009×(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
=(2009-2008)×1+(2009-2008+1)×
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
=1+2×
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
=1+1+1…+1
=2008
故答案为:2008.
点评:此题算式较长,应认真分析数据,个怒特点,进行变形,运用运算技巧,灵活简算.
练习册系列答案
相关题目